

Does Size Matter?

Effect of catching various sizes of fish on stock sustainability

Chris Lunsford, AFSC, Juneau AK

NOAA FISHERIES SERVICE

May 9, 2012

How do you present size related mortality in the context of a barotrauma workshop?

Size dependent mortality factors

Does one fish have a better chance of surviving than another

Stock sustainability factors

Does one fish contribute more to the population than another

Release the right fish to promote population health

Releasing fish has become common in the US

Fish size and release mortality

- Are there differential mortality rates associated with fish size?
- Should handling/release techniques vary with fish size?
- What are the unseen effects physiological and repeated capture effects?
- How do size selective removals impact a population's ability to sustain itself?

Factors that affect release mortality

- Hook Location
- Gear effects
- Recompression/venting
- Environmental conditions
- Stress
- Size of fish
- Depth of capture

Catch and release and mortality

Every capture event has some probability of mortality associated with it

- Short term
 - Physical injury due to capture
- Mid term
 - Physiological stress due to capture
- Long term
 - Population effects due to removal

Are there differential mortality rates by size?

Review of 274 studies and 14 mortality factors

Hook location* Modified hook

Fish size Hook removal/cut line*

Bait/artificial* Venting**

Hook size Active/passive fishing

Treble/single hook Play/handling time**

Circle/J- hook**

Capture depth*

Barbed/barbless hook*** Water temperature*

*highly significant p<0.01

**significant p<0.05

***marginally significant p<0.1

Should handling and release techniques vary by fish size?

Should larger/smaller fish be handled differently?

- physical injury probability higher for larger fish
- physiological stress probability higher for larger fish
- smaller fish less able to recover from serious injury

The unforseen mortality factors

Physiological effects

 delayed mortality difficult to measure – large fish especially susceptible

Cumulative effects

repeated captures
 increases risk of
 mortality – larger fish are
 more likely to have been
 caught multiple times

Bartholomew and Bohnsack, 2005 9

Indirect impacts on release mortality

Minimum size limit regulation

 when min size limit increased the probability of a fish being released increases

Cumulative effects

 increased probability of release also increases the probability of being recaptured

Release mortality summary

Review of 274 catch and release studies

- mean mortality was 18%
- multiple factors contribute to mortality risk
- risk of mortality extends beyond the capture event
- fish size alone is often not a significant factor but has indirect impacts on mortality

Release mortality - West Coast

Stock assessment assumptions

- IPHC assumes 16% mortality in under 32" Pacific halibut
- discard mortality rate for released sablefish was 11% based on tag returns
- majority of discard rates in Alaska are assumed to be 100%
- West Coast rockfish discard estimates are a function of capture depth

Workshop challenge – size and mortality

Points to ponder

- even when released there will be discard mortality
- size only one of many factors
 that contribute to risk of mortality
- need to consider cumulative effects to understand mortality
- should size be considered by management as a release criteria

Fish size and stock sustainability

- not talking about if fish X will survive at release
 - size dependent mortality
- how many fish X's and fish
 Y's should there be to
 ensure a healthy population
 - size/age structure of population

Fisheries management objectives

Maximum sustainable yield

- stock productivity is based on growth and recruitment
- many West Coast species don't have good stock/recruit relationship
- need some measure of reproductive capacity - or spawning potential

Spawners

Measuring spawning potential of a population

Spawning Stock Biomass

 proxy for measurement of mature females in a population

 harvest policy conserves 40% of SSB population compared to unfished biomass

 assumes reproductive output per unit weight is same for all mature females

Does spawning stock biomass accurately describe spawning potential?

Reproductive characteristics vary by fish size and age

- fecundity
- fish experience
- maternal age effects

Size matters - fecundity

Larger fish are more fecund

- proportional to body size
- can dedicate more energy to reproductive growth
- Atlantic cod fecundity can vary from 150,000 eggs to 25 million eggs

Size matters - experience

Larger/older fish have more experience

- larger fish produce larger eggs and larvae
- more batch spawnings
- experienced Atlantic cod contributed 10-12 times more offspring to age 1 than inexperienced fish

Size matters - maternal age

Larger/older fish gamble better (Pacific rockfish)

- commit more reproductive energy to larvae than smaller/younger fish
- able to gamble on release timing
- produce further developed embryos,
 larvae with more energy storage, larger
 larvae, and produce offspring with
 higher survival

Spawning potential and size based mortality

Fishing effects may reduce spawning potential

- reduces population resiliency to change and perturbation
- evokes evolutionary responses which reduces spawning potential
- reduces the reproductive capacity of a population

Size matters - Pacific rockfish

Spawning potential important

- older larger females important to population - max ages >100
- size/age truncation may affect reproductive capacity
- West Coast rockfish are overfished

• is B40% conservative enough? B50%? B60%?

Size matters - Pacific Halibut

Pacific halibut are big

- max age is 55 years
- 50 lb female produces 500,000 eggs
- 250 lb female produces 4 million
- females grow faster and tend to live longer
- few males reach 80 lbs
- fish over 100 lbs nearly all female
- 500 pounders are often 30 something
- currently in a very slow growth regime

Spawning potential in a recreational context

Size-based mortality effects and recreational fishing

- size selective fishing is common - 1 fish at a time
- do spawning potential benefits outweigh discard mortality risks?
- outreach efforts on things like spawning potential effects can influence angler mindset

Does size matter – release mortality and stock sustainability

Points to ponder when making recommendations

- strive to promote stable age/size population structure
- reduce discard mortality yet realize capture events contribute to mortality
- keep exploitation rates in perspective even though promoting releasing fish especially with unknown effects of barotrauma

