

Does Size Matter?

Effect of catching and releasing various sizes of fish on stock sustainability

Todd Kellison, NMFS SEFSC

April 2012

NOAA FISHERIES SERVICE

Topics...

- Fish size
 - Reproductive value
 - Release mortality
 - Depth
- Implications for stock sustainability
- Management implications
- Research recommendations

Size and reproductive value

Reef fish in the SE US:

- Reproduce by spawning; external fertilization
- Spawn multiple times a year (batch spawners)

Annual fecundity =
(# eggs per spawn) x (# of
spawns per year)

Annual fecundity = (# eggs per spawn) x (# of spawns per year)

Annual fecundity =

(# eggs per spawn) x (# of spawns per year)

Does size matter?

- Yes
 - Non-linear relationship between fish size and # of eggs produced per batch
- $E = aw^b$
- For a small increase in fish size, there is a disproportionate increase in # eggs per spawn

Annual fecundity (# eggs per spawn) x (# of spawns per year)

Annual fecundity = (# eggs per spawn) x (# of spawns per year)

Does size matter?

 Unclear - relationship unknown for many species in southeast

Annual fecundity =

(# eggs per spawn) x (# of spawns per year)

Does size matter?

- Relationship varies by species
- · Increases with age / size for most species (Fitzhugh et al. in review)
 — Gag, red and YT snapper,
 - triggerfish
- Decreases for vermilion snapper
- Unknown for many species
- Usually assumed to be constant in stock assessments
- Adds error to assessments

Size and reproductive value

- Annual fecundity = (eggs per spawn) x (# of spawns)
- General conclusion: annual fecundity (reproductive capacity) increases disproportionately with fish size

Size and reproductive value

- Some evidence that older (larger) fish produce better eggs and larvae
 - Rockfish (Berkeley et al. 2004)
 - Atlantic cod (Trippel 1998)
 - SE species?
- Implication: older / larger fish produce more survivors

Size and reproductive value

- Bigger = much better
- More eggs produced x better offspring survival = significant increases in reproductive value with size
- Probably true for ~ all reef fish species in the southeast

Does release mortality vary with fish size?

Review of 274 studies and 14 mortality factors

Hook location*

Fish size

Bait/artificial*

Hook size

Treble/single hook

Circle/J- hook**

Barbed/barbless hook***

Modified hook

Hook removal/cut line*

Venting**

Active/passive fishing

Play/handling time**

Capture depth*

Water temperature*

- * highly significant p<0.01</p>
- ** significant p<0.05
- *** marginally significant p<0.1

Size and release mortality

- Evidence for both increasing and decreasing release mortality with size, depending on species and study
- · Most studies indicated no effect of size

Size and release mortality

- Limited information from SE US
 - Black sea bass and vermilion snapper
 - No effect of size (Collins et al. 1999)
 - Red grouper and red snapper
 - Slight (non-significant) trend of increasing mortality with increasing size (Burns et al. 2002)
 - Barotrauma-related swim bladder injury increases with size for both species (Burns et al. 2008)
 - Greater recapture rates for larger individuals (Burns pers. comm.)
 - (Dolphin) predation may be higher on smaller fish (Burns, pers. comm.)

Size and release mortality

Limited indication of effects of size on release mortality for SE US reef fish

Size and release mortality

Limited indication of effects of size on release mortality for SE US reef fish

More research needed

- Extent of barotraumarelated injuries (and therefore release mortality) increases with depth
- For some species, positive relationship between size and depth
 - Gag, black sea bass, red snapper, gray snapper
- In these cases, larger fish likely suffer greater release mortality

Depth

Estimated Gag Mortality Fitted Logit model

Depth

- Extent of barotraumarelated injuries (and therefore release mortality) increases with depth
- For some species, positive relationship between size and depth
 - Gag, black sea bass, red snapper
- In these cases, larger fish likely suffer greater release mortality

Depth

- Extent of barotraumarelated injuries (and therefore release mortality) increases with depth
- For some species, positive relationship between size and depth
 - Gag, black sea bass, red snapper
- In these cases, larger fish likely suffer greater release mortality

Summary

- Large fish contribute disproportionately to reproductive output of population
- Limited indication of size-related release mortality, aside from that related to depth of capture
- Depth of capture critical determinant of release mortality

Stock sustainability

Fisheries tend to target the largest fish, leading to size/age truncation

Stock sustainability

1957

Early 1980s

2007

McClenachan, L. 2008. Documenting Loss of Large Trophy Fish from the Florida Keys with Historical Photographs. Conservation Biology.

Stock sustainability

- Consistent, repeated removal of largest fish over time removes "fast-growth" genotypes from the population
- Result = slower growth rates and decreased stock productivity (Dieckmann 2009, many others)

Stock sustainability

- For sex-changing species (e.g., many groupers), removal of largest fish can result in skewed sex ratios
 - Many groupers change from female to male with age; largest fish are predominantly male
 - Percentage of male (vs female) gag grouper in South
 Atlantic waters decreased from 20% to 6% between ~
 1980 and 1995 (McGovern et al. 1998)
- Result = impaired reproductive output?

Stock sustainability

- Size / age truncation leads to considerable reductions in Spawning Potential Ratio (SPR)
 - Current spawning stock biomass / Virgin spawning stock biomass
 - SPR ~ 30-40% = overfishing benchmark
 - SPR < 30-40% = overfishing

Stock sustainability

Maintaining large individuals in the population encourages stock sustainability

Management implications

- In relatively shallow waters, high likelihood of survival of released fish
 - Management measures such as bag and size limits can support the maintenance of large fish in the population and stock sustainability
- In relatively deep waters, low likelihood of survival of released fish
 - For depleted or heavily exploited stocks, spatial closures (voluntary or regulatory) may be necessary?

Management implications

Ex: speckled hind and Warsaw grouper

Management implications

- In relatively shallow waters, high likelihood of survival of released fish
 - Management measures such as bag and size limits can support the maintenance of large fish in the population and stock sustainability
- In relatively deep waters, low likelihood of survival of released fish
 - For depleted or heavily exploited stocks, spatial closures (voluntary or regulatory) may be necessary? OR...

Management implications

- In relatively shallow waters, high likelihood of survival of released fish
 - Management measures such as bag and size limits can support the maintenance of large fish in the population and stock sustainability
- In relatively deep waters, low likelihood of survival of released fish
 - For depleted or heavily exploited stocks, spatial closures (voluntary or regulatory) may be necessary? OR...
 - Recompression?

Research needs

- Improved species-specific information on release mortality
 - Size
 - Barotrauma
 - Predation
- Studies of the effects of recompression on release mortality
- · Other?

Trippel, EA. 1998. Egg Size and Viability and Seasonal Offspring Production of Young Atlantic Cod. TAFS 127(3): 339-359.

Lambert et al. 2005?

Releasing fish has become common

